Recursive selection sort for singly linked list | Swapping node links
Given a singly linked list containing n nodes. The problem is to sort the list using recursive selection sort technique. The approach should be such that it involves swapping node links instead of swapping nodes data.
Examples:
Input : 10 -> 12 -> 8 -> 4 -> 6
Output : 4 -> 6 -> 8 -> 10 -> 12
In Selection Sort, we first find minimum element, swap it with the beginning node and recur for remaining list. Below is recursive implementation of these steps for linked list.
recurSelectionSort(head)
if head->next == NULL
return head
Initialize min = head
Initialize beforeMin = NULL
Initialize ptr = head
while ptr->next != NULL
if min->data > ptr->next->data
min = ptr->next
beforeMin = ptr
ptr = ptr->next
if min != head
swapNodes(&head, head, min, beforeMin)
head->next = recurSelectionSort(head->next)
return head
swapNodes(head_ref, currX, currY, prevY)
head_ref = currY
prevY->next = currX
Initialize temp = currY->next
currY->next = currX->next
currX->next = temp
void
swapNodes(
struct
Node** head_ref,
struct
Node* currX,
struct
Node* currY,
struct
Node* prevY)
{
// make 'currY' as new head
*head_ref = currY;
// adjust links
prevY->next = currX;
// Swap next pointers
struct
Node* temp = currY->next;
currY->next = currX->next;
currX->next = temp;
}
// function to sort the linked list using
// recursive selection sort technique
struct
Node* recurSelectionSort(
struct
Node* head)
{
// if there is only a single node
if
(head->next == NULL)
return
head;
// 'min' - pointer to store the node having
// minimum data value
struct
Node* min = head;
// 'beforeMin' - pointer to store node previous
// to 'min' node
struct
Node* beforeMin = NULL;
struct
Node* ptr;
// traverse the list till the last node
for
(ptr = head; ptr->next != NULL; ptr = ptr->next) {
// if true, then update 'min' and 'beforeMin'
if
(ptr->next->data < min->data) {
min = ptr->next;
beforeMin = ptr;
}
}
// if 'min' and 'head' are not same,
// swap the head node with the 'min' node
if
(min != head)
swapNodes(&head, head, min, beforeMin);
// recursively sort the remaining list
head->next = recurSelectionSort(head->next);
return
head;
}
// function to sort the given linked list
void
sort(
struct
Node** head_ref)
{
// if list is empty
if
((*head_ref) == NULL)
return
;
// sort the list using recursive selection
// sort technique
*head_ref = recurSelectionSort(*head_ref);
}
Given a singly linked list containing n nodes. The problem is to sort the list using recursive selection sort technique. The approach should be such that it involves swapping node links instead of swapping nodes data.
Examples:
Input : 10 -> 12 -> 8 -> 4 -> 6
Output : 4 -> 6 -> 8 -> 10 -> 12
void
swapNodes(
struct
Node** head_ref,
struct
Node* currX,
struct
Node* currY,
struct
Node* prevY)
{
// make 'currY' as new head
*head_ref = currY;
// adjust links
prevY->next = currX;
// Swap next pointers
struct
Node* temp = currY->next;
currY->next = currX->next;
currX->next = temp;
}
// function to sort the linked list using
// recursive selection sort technique
struct
Node* recurSelectionSort(
struct
Node* head)
{
// if there is only a single node
if
(head->next == NULL)
return
head;
// 'min' - pointer to store the node having
// minimum data value
struct
Node* min = head;
// 'beforeMin' - pointer to store node previous
// to 'min' node
struct
Node* beforeMin = NULL;
struct
Node* ptr;
// traverse the list till the last node
for
(ptr = head; ptr->next != NULL; ptr = ptr->next) {
// if true, then update 'min' and 'beforeMin'
if
(ptr->next->data < min->data) {
min = ptr->next;
beforeMin = ptr;
}
}
// if 'min' and 'head' are not same,
// swap the head node with the 'min' node
if
(min != head)
swapNodes(&head, head, min, beforeMin);
// recursively sort the remaining list
head->next = recurSelectionSort(head->next);
return
head;
}
// function to sort the given linked list
void
sort(
struct
Node** head_ref)
{
// if list is empty
if
((*head_ref) == NULL)
return
;
// sort the list using recursive selection
// sort technique
*head_ref = recurSelectionSort(*head_ref);
}
No comments:
Post a Comment